Solve each problem.

1) It takes a baker $1 / 2$ of an hour to make enough cookies to fill $\frac{1}{3}$ of large box. How long would it take him to fill the whole box?
2) A water hose had filled up $\frac{1}{3}$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
3) Maria spent $1 / 2$ of an hour playing on her phone. That used up $1 / 3$ of her battery. How long would she have to play on her phone to use the entire battery?
4) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
5) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
6) A container of gasoline that held $\frac{1}{2}$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
7) A snail going full speed was taking $1 / 2$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
8) While exercising Luke walked $\frac{1}{2}$ of a mile in $\frac{1}{3}$ of an hour. At this rate, how far will he have travelled after an hour?
9) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
10) A restaurant took $1 / 2$ of an hour to use $1 / 3$ of a package of napkins. At this rate, how many hours would it take to use the entire package?

Answers

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) It takes a baker $1 / 2$ of an hour to make enough cookies to fill $\frac{1}{3}$ of large box. How long would it take him to fill the whole box?
2) A water hose had filled up $\frac{1}{3}$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
3) Maria spent $1 / 2$ of an hour playing on her phone. That used up $1 / 3$ of her battery. How long would she have to play on her phone to use the entire battery?
4) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
5) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
6) A container of gasoline that held $\frac{1}{2}$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
7) A snail going full speed was taking $1 / 2$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
8) While exercising Luke walked $1 / 2$ of a mile in $\frac{1}{3}$ of an hour. At this rate, how far will he have travelled after an hour?
9) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $\frac{1}{3}$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
10) A restaurant took $1 / 2$ of an hour to use $1 / 3$ of a package of napkins. At this rate, how many hours would it take to use the entire package?

Answers

1. $1 \frac{1}{2}$ hours
2. \qquad
$1 / \frac{1}{2}$ hours
3. \qquad
4. \qquad
5. \qquad
6.

$1 / 2$ minutes
$1 \frac{1}{2}$ miles

9. \qquad
$1 / 2$ hours
10. \qquad
