

Solve each problem.

- It takes a baker $\frac{1}{2}$ of an hour to make enough cookies to fill $\frac{1}{3}$ of large box. How long would it take him to fill the whole box?
- A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
- Maria spent $\frac{1}{2}$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?
- An old potato outputs $\frac{1}{2}$ of a volt of electricty, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
- A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?
- A container of gasoline that held $\frac{1}{2}$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
- 7) A snail going full speed was taking $\frac{1}{2}$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
- While exercising Luke walked $\frac{1}{2}$ of a mile in $\frac{1}{3}$ of an hour. At this rate, how far will he have travelled after an hour?
- A bag of grass seeds weighed $\frac{1}{2}$ of a kilogram. That was enough to cover $\frac{1}{3}$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
- 10) A restaurant took $\frac{1}{2}$ of an hour to use $\frac{1}{3}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?

Answers

1. _____

2.

3.

4.

5. _____

6.

7. _____

8. _____

9. _____

10. _____

Solve each problem.

- 1) It takes a baker $\frac{1}{2}$ of an hour to make enough cookies to fill $\frac{1}{3}$ of large box. How long would it take him to fill the whole box?
- A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
- Maria spent $\frac{1}{2}$ of an hour playing on her phone. That used up $\frac{1}{3}$ of her battery. How long would she have to play on her phone to use the entire battery?
- An old potato outputs $\frac{1}{2}$ of a volt of electricty, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
- A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?
- A container of gasoline that held $\frac{1}{2}$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
- A snail going full speed was taking $\frac{1}{2}$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
- While exercising Luke walked $\frac{1}{2}$ of a mile in $\frac{1}{3}$ of an hour. At this rate, how far will he have travelled after an hour?
- A bag of grass seeds weighed $\frac{1}{2}$ of a kilogram. That was enough to cover $\frac{1}{3}$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
- 10) A restaurant took $\frac{1}{2}$ of an hour to use $\frac{1}{3}$ of a package of napkins. At this rate, how many hours would it take to use the entire package?

A	n	c	1 X /	6	r	C	
\boldsymbol{H}	П	2	W	C	ı	3	

- $1\frac{1}{2}$ hours
- $_{2}$ $1\frac{1}{2}$ hours
- $1\frac{1}{2}$ hours
- 4. **3 potatoes**
- 5. **3 bags**
- 6. **3 containers**
- $1\frac{1}{2}$ minutes
- $1\frac{1}{2}$ miles
- 9. **3 bags**
- $1^{1/2}$ hours